Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124202, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38565052

RESUMEN

A groundbreaking optical sensing membrane has been engineered for the accurate assessment of copper ions. The pliable poly(vinyl chloride) membrane is formulated through the integration of sodium tetraphenylborate (Na-TPB), 4-(2-hydroxy-4-nitro azobenzene)-2-methyl-quinoline (HNAMQ), and tri-n-octyl phosphine oxide (TOPO), in conjunction with o-nitrophenyl octyl ether (o-NPOE). The sensor membrane undergoes a thorough investigation of its composition to optimize performance, revealing that HNAMQ serves a dual role as both an ionophore and a chromoionophore. Simultaneously, TOPO contributes to enhancing the complexation of HNAMQ with copper ions. Demonstrating a linear range for Cu2+ ions spanning from 5.0 × 10-9 to 7.5 × 10-6 M, the proposed sensor membrane showcases detection and quantification limits of 1.5 × 10-9 and 5.0 × 10-9 M, respectively. Rigorous assessments of potential interferences from other cations and anions revealed no observable disruptions in the detection of Cu2+. With no discernible HNAMQ leaching, the membrane demonstrates rapid response times and excellent durability. The sensor exhibits remarkable selectivity for Cu2+ ions and can be regenerated through exposure to 0.05 M EDTA. Successful application of the sensor in determining the presence of Cu2+ in biological (blood, liver and meat), soil, food (coffee, black tea, sour cherry juice, black currant, and milk powder) and environmental water samples underscores its efficacy.


Asunto(s)
Colorimetría , Cobre , Cobre/análisis , Cationes , , Alimentos
2.
RSC Adv ; 14(1): 712-724, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173579

RESUMEN

A pioneering optical sensor has been effectively developed to achieve precise and reliable detection of titanium ions. The sensor employs an optode membrane composed of 2-amino-4-((4-nitrophenyl)diazenyl)pyridine-3-ol (ANPDP) and sodium tetraphenylborate (NaTPB) incorporated into a plasticized PVC matrix, with dioctyl sebacate (DOS) acting as the plasticizer. When exposed to Ti4+ ions at pH 8.25, the color of the sensing membrane undergoes a distinctive transformation from yellow-orange to violet. Extensive investigations were carried out to assess and optimize various factors influencing the efficiency of ion uptake. Through careful experimentation, the optimum conditions were determined to be 60.0% DOS, 6.0% ANPDP, 30% PVC, and 4.0% NaTPB, with a rapid response time of 5.0 min. Within these conditions, the developed optode demonstrates an impressive linear range of 3.0-225 ng mL-1, boasting detection (LOD) and quantification (LOQ) limits of 0.91 and 2.95 ng mL-1, respectively. Moreover, the precision of the sensor, as indicated by the relative standard deviation (RSD%), remained consistently below 1.55% in six replicate determinations of 100 ng mL-1 Ti4+ across diverse membranes. The selectivity of the sensor was rigorously examined for a range of cations and anions, successfully establishing the tolerance limits for interfering species. Notably, the presence of EDTA as a masking agent did not compromise the high selectivity of the sensor. Consequently, the innovative probe holds significant potential as a reliable analytical tool for quantifying titanium content in various samples, including water, geological materials, soil, plants, paints, cosmetics, and plastics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...